DIFFERENTIABLE MONOTONE MAPS ON MANIFOLDS

BY P. T. CHURCH(1)

1. **Introduction.** If X and Y are separable metric spaces and $f: X \to Y$ is a map, the *branch set* B_f is the set of points at which f fails to be a local homeomorphism. The map f is called *proper* if for each compact set $W \subset Y$, $f^{-1}(W)$ is compact; in particular, if X is compact then f is proper. A proper map $f: X \to Y$ is called *monotone* if for each $y \in Y$, $f^{-1}(y)$ is connected (it may be empty). Most authors require that a monotone map be onto, but we consider the more general situation (only) in (2.1) and (2.2).

Part of the interest in monotone maps is due to the monotone-light factorization theorem [32, pp. 141–142] proved independently by Eilenberg and Whyburn: If $f: X \to Y$ is proper and Y is locally compact, then there exists a unique factorization f = hg, where g is monotone (onto) and h is light (i.e., for each $y \in Y$, dim $f^{-1}(y) \le 0$). If X and Y are differentiable n-manifolds, and $f: X \to Y$ is differentiable, a natural question thus arises—under what conditions can g and h also be chosen to be differentiable? If f is C^3 , then one condition is that dim $(B_f) \le n-3$; in fact, h is a diffeo-covering map in this case [8]. In an effort to answer this question more generally, and to characterize the map g of [8] more fully, it seems worthwhile to study the differentiable monotone maps $f: M^n \to N^n$ on n-manifolds (without boundary).

A contractible, compact *n*-manifold with simply-connected boundary is called a homotopy *n*-cell. A compact subset A of an *n*-manifold M^n is acyclic if it has the integral Čech cohomology groups of a point; A is homotopy cellular if there exist homotopy *n*-cells $A_k \subset M^n$ such that $\bigcap_k A_k = A$ and $A_{k+1} \subset \operatorname{int}(A_k)$; it is cellular [3] if, in addition, each A_k is an *n*-cell. If M^n and N^n are *n*-manifolds without boundary, a proper map $f: M^n \to N^n$ is acyclic (resp., homotopy cellular, cellular) if, for each $y \in N^n$, $f^{-1}(y)$ is acyclic (resp., homotopy cellular, cellular).

Standing hypothesis. Whenever the statement of a theorem refers to a C^m map f without specifying its domain and range, it is understood that $f: M^n \to N^n$ is proper, where M^n and N^n are C^m connected (separable) n-manifolds without boundary (m = 0, 1, ...).

The main theorem of this paper, proved in (4.4) and (4.6), is:

Presented to the Society, January 29, 1965; received by the editors September 14, 1964 and, in revised form, June 10, 1966.

⁽¹⁾ Research supported by National Science Foundation grant GP-2193; revision supported by an NSF Senior Postdoctoral Fellowship at the Institute for Advanced Study.

- 1.1. THEOREM. (a) If f is C^n monotone and $\dim(B_t) < n/2$, or
- (b) if f is C^n acyclic and $\dim(B_t) \leq n-2$,

then f is homotopy cellular; if $n \neq 3$, 4, or 5, then f is cellular.

In fact the sets A_k may be chosen to be C^n manifolds. Examples are given ((2.5), (2.12), (2.14),and (4.5)) to show that the hypotheses on dim (B_t) are required. The simplicial analog is trivially true (4.8).

The factorization theorem of [8] thus implies:

1.2. COROLLARY. If f is C^m $(m \ge n \ge 4)$ and $\dim(B_f) < n/2$, then there exists a unique factorization f = hg, where $g: M^n \to K^n$ is a C^m homotopy cellular map (cellular if $n \neq 4, 5$), K^n is a C^m manifold, and $h: K^n \to N^n$ is a C^m diffeo-covering тар.

For n=1, 2, and 3 (1.2) is easily seen to be false.

The results in this paper all deal directly with differentiable monotone or quasimonotone maps (§2), with two exceptions. In §5 a question of Hopf about essential maps of S^3 into S^2 is answered (the monotone map involved is, of course, the Hopf fibering). And a theorem on quasi-monotone maps (2.6) leads naturally to (1.3), stated below and proved in (2.10).

- If $f: M^m \to N^n$ is C^1 , let $R_k(f)$ be the set of points at which the Jacobian matrix (derivative map) of f has rank at most k. If f is C^{m-k} , then [25, p. 173, Theorem 2] $\dim(f(R_k(f))) \le k$; if f is proper, then $f(R_k(f))$ is closed in N^n .
- 1.3. THEOREM. If f is C^2 and M^n and N^n are oriented, then for each $y \in N^n$ $-f(R_{n-2}(f)), f^{-1}(y)$ has at least $|\deg f|$ components.
- See (1.6) below; [28, p. 128, Theorem (4.3)] can be viewed as a consequence of (1.3). The complex analytic function $f: S^2 \to S^2$ defined by $f(z) = z^2$ shows that $f(R_{n-2}(f))$ cannot be replaced by a subset of smaller dimension.
- 1.4 Conventions. Throughout this paper manifolds are separable and without boundary, unless otherwise specified. The tangent bundle of M^n is denoted by TM^n , and the tangent space at $x \in M^n$ by T_xM^n . Coordinates are written up x^i , a map is a continuous function, and the composition of two functions is denoted by gf or $g \circ f$.

Čech homology and cohomology are consistently used, Z (resp. Z_p) is the group of integers (integers mod p), and the (weak) direct sum is denoted by \sum . The boundary of a set X is denoted by bdy X or ∂X (in case X is a manifold with boundary), the interior of X by int X, the closure of X by \overline{X} or Cl[X], and the restriction of the map f to X by f|X. The distance between two points is d(x, y), and $S(x, \epsilon) = \{y : d(x, y) < \epsilon\}$. The *n*-sphere is denoted by S^n , euclidean *n*-space by E^n , the origin vector in E^n by 0, and the closed ball Cl[S(0, 1)] in E^n by D^n .

1.5. Remark. Except in §5 each theorem deals with C^m $(m \ge 1)$ manifolds and a C^m map $f: M^n \to N^n$. Since each property of hypothesis and conclusion is invariant under C^m diffeomorphisms, we may as well suppose that each of M^n

and N^n is a C^{∞} [22, p. 41] complete Riemannian manifold [22, p. 20] with induced triangulation [22, p. 101, (10.6)] and distance function induced by its Riemannian metric [17, p. 166, (3.5)].

Furthermore the differentiability hypotheses in Thom's Transversality Lemma [29, p. 26] can be improved [8, p. 376, (2.6)]. See also [8, p. 376, (2.5)].

- 1.6. Oriented C^m manifolds are defined in [28, p. 115, (3.7)] and characterized in [28, p. 116, Theorem 3.3]. For connected oriented C^m manifolds M^n and N^n , and a proper C^m map $f: M^n \to N^n$, the degree $\deg(f)$ is defined and characterized in [28, p. 127, Theorem 4.2]. In particular, it is meaningful [28, p. 127] to talk of the sign of the Jacobian determinant J at a point x, i.e., J(x) > 0, = 0, or < 0.
- 2. General properties of monotone and quasi-monotone maps. If X is a locally connected generalized metric continuum and Y is a separable metric space, a proper map $f: X \to Y$ is called quasi-monotone [32, p. 152] if and only if, for each region $U \subset Y$ and component V of $f^{-1}(U)$, f(V) = U. Both monotone onto maps and proper open maps are quasi-monotone, and conversely, any quasi-monotone map f can be (uniquely) factored f = hg, where g is monotone (onto) and h is light open [32, pp. 151–155]. On locally connected continua the quasi-open maps of [26, p. 110] are quasi-monotone, and [34] is devoted to a study of these maps in case X and Y are 2-manifolds. Some results on differentiable quasi-monotone maps are given in [6], [30], and [31].

A C^2 proper map $f: M^n \to N^n$ with $\dim(B_f) \le n-2$ is quasi-monotone [6, p. 380, (3.2)]. More generally, if $\dim B_f \le n-1$ and the Jacobian $J \ge 0$ or $J \le 0$ locally at each point of M^n , then [6, (3)] f is quasi-monotone.

- 2.1. LEMMA. Let f be C^2 , let $n \ge 2$, and let y(i) be distinct points in $N^n f(R_{n-2}(f))$ (i = 1, 2). Then
- (a) Each component of $f^{-1}(y(i))$ is a point, or a C^2 embedding of a closed interval or S^1 .
- (b) If f is monotone or quasi-monotone, then $f^{-1}(y(i))$ has a finite number of components.
- (c) If $f^{-1}(y(i))$ has a finite number of components, then there are a C^2 diffeomorphism ρ of an open subset of N^n onto $S^1 \times E^{n-1}$, and a C^2 diffeomorphism σ of $L^1 \times E^{n-1}$ onto $f^{-1}(\rho^{-1}(S^1 \times E^{n-1}))$, where L^1 is the disjoint union of copies of S^1 , $\rho f \sigma(S^1 \times \{t\}) \subset S^1 \times \{t\}$, and $\rho(y(i)) \in S^1 \times \{0\}$ $(i=1,2; t \in E^{n-1})$.
- **Proof.** We may suppose (1.5) that M^n and N^n are C^{∞} manifolds. For each $\bar{x} \in f^{-1}(y(i))$, there are [7, p. 87, (1.1)] C^2 diffeomorphisms λ of a neighborhood $U(\bar{x})$ of \bar{x} onto E^n and μ of a neighborhood V(y(i)) of y(i) onto E^n such that the map $g = \mu f \lambda^{-1}$ has $g^i(x^1, x^2, \ldots, x^n) = x^i$ $(j = 1, 2, \ldots, n-1)$; conclusion (a) follows.

If f is either monotone or quasi-monotone, then for each $(x^1, x^2, ..., x^{n-1}) \in E^{n-1}$ the map $h: E^1 \to E^1$ defined by $g^n(x^1, x^2, ..., x^n) = h(x^n)$ is monotone. Since f is proper, conclusion (b) follows.

For (c) let $\Omega_{i,j}$ be the components of $f^{-1}(y(i))$ $(j=1,2,\ldots,k_i;\ i=1,2)$. If

 $\Omega_{i,j} = \{x\}$ where $x \notin R_{n-1}(f)$, let $\Gamma_{i,j}$ be any (n-1)-subspace of the tangent space $T_{y(i)}M^n$; otherwise, by the argument of the second and third paragraphs of [8, p. 378, (3.1)] there is a unique (n-1)-subspace $\Gamma_{i,j} \subset T_{y(i)}M^n$ such that $f_*(T_xM^n) = \Gamma_{i,j}$ for each $x \in \Omega_{i,j}$.

There is a C^{∞} diffeomorph $\Lambda \subseteq N^n$ of E^1 with $y(i) \in \Lambda$; thus [24] there is a C^{∞} diffeomorph $U \subseteq N^n$ of E^n with $y(i) \in U$ (i = 1, 2). Let $\alpha : S^1 \to U$ be a C^{∞} embedding such that $y(i) \in \alpha(S^1)$, $\alpha(S^1)$ has trivial normal bundle, and $T_{y(i)}\alpha(S^1)$ is transverse to $\Gamma_{i,j}$ $(j=1, 2, \ldots, k_i; i=1, 2)$. Let V be a tubular neighborhood of $\alpha(S^1) - \{y(1), y(2)\}$ in $U - \{y(1), y(2)\}$; by [29, p. 26] there is a C^2 diffeomorphism A of N^n onto itself such that A is the identity map off V and f is transverse regular [29, p. 23] on $A^{-1}(\alpha(S^1) - \{y(1), y(2)\})$; thus f is transverse regular on $A^{-1}(\alpha(S^1))$.

Let ρ be a C^2 diffeomorphism of a tubular neighborhood of $A^{-1}(\alpha(S^1))$ onto $S^1 \times E^{n-1}$ with $\rho(A^{-1}(\alpha(S^1))) = S^1 \times \{0\}$. Let $\varepsilon > 0$ and σ be as given by [8, p. 376, (2.7)]; then each component of $L^1 = f^{-1}(A^{-1}(\alpha(S^1)))$ is $(C^2$ diffeomorphic to) S^1 . We may as well suppose that $S(0, \varepsilon) = E^{n-1}$, and (c) follows.

- 2.2. THEOREM. Let f be C^2 monotone.
- (1) If f is onto, then (i) for each $y \in N^n$, $f^{-1}(y)$ does not separate M^n if $n \ge 2$, and (ii) for each $y \in N^n f(R_{n-2}(f))$, $f^{-1}(y)$ is a point or a C^2 embedding of [0, 1].
- (2) If f is not onto, then (i) $B_f = R_{n-1}(f) = M^n$ (so that $\dim(f(M^n)) \le n-1$ [28, p. 47, Theorem 3.1]), and (ii) $f^{-1}(N^n f(R_{n-2}(f)))$ is the space of a fiber bundle over a (not necessarily connected) (n-1)-manifold with fiber S^1 and projection f.

Proof. If n=1 and f is onto, then conclusion (1)(ii) is satisfied; if f is not onto, then $M^1 = S^1$ and f is constant. Thus we may suppose than $n \ge 2$.

Let A_1 (respectively, A_2) be the subset of $N^n-f(R_{n-2}(f))$ consisting of points y with $f^{-1}(y)$ a point or a C^2 embedding of a closed interval (resp., the empty set or a C^2 embedding of S^1). By (2.1)(a) $A_1 \cup A_2 = N^n - f(R_{n-2}(f))$. For each $y \in f(M^n) - f(R_{n-2}(f))$, there is a point $y_1 \neq y$, $y_1 \in N^n - f(R_{n-1}(f))$ [28, p. 47, Theorem 3.1]; let ρ and σ be as given by (2.1)(b) and (c) for y and y_1 .

For $y \in A_1$ and S^1 the component of L^1 containing $f^{-1}(y)$, the restriction map

$$\rho f\sigma \big| (S^1 \times \{0\}) \colon\thinspace S^1 \times \{0\} \to S^1 \times \{0\}$$

is not constant, and since it is monotone, it is thus essential. Thus for each $t \in S(0, \varepsilon)$ the map $\rho f \sigma | (S^1 \times \{t\})$ is essential, and hence onto. Since f is monotone, $L^1 = S^1$; moreover, for each $u \in S^1 \times S(0, \varepsilon)$, $(\rho f \sigma)^{-1}(u)$ is not homeomorphic to S^1 . As a result A_1 is open.

For $y \in A_2 \cap f(M^n)$ and S^1 a component of L^1 , the map $\rho f \sigma | (S^1 \times \{0\})$ is constant, and it follows as above that $\rho f \sigma | (S^1 \times \{t\})$ is constant for each $t \in S(0, \epsilon)$. Thus A_2 is also open. Since f is proper, $f(R_{n-2}(f))$ is closed; since $\dim(f(R_{n-2}(f))) \leq n-2$ [25, p. 173, Theorem 2], $N^n - f(R_{n-2}(f))$ is connected. Thus either $A_1 = \emptyset$ or $A_2 = \emptyset$.

Suppose $A_2 = \emptyset$. Then $N^n - f(R_{n-2}(f)) \subset f(M^n)$, and, since f is proper, f is onto. Let $n \ge 2$, and let $w \in N^n$. Since f is monotone onto, it is quasi-monotone [32, pp. 151-152], so that each component of $M^n - f^{-1}(w)$ has image $N^n - \{w\}$. Thus $f^{-1}(w)$ does not separate M^n . Hence f satisfies conclusion (1).

Suppose $A_1 = \emptyset$. If $M^n \neq B_f$, then there exists an open set Q on which f is a homeomorphism; since $\dim(f(R_{n-1}(f))) \leq n-1$, f(Q) meets $N^n - f(R_{n-1}(f))$, and a contradiction results. Thus conclusion (2)(i) holds in this case. In particular f is not onto. For $y \in f(M^n) - f(R_{n-2}(f))$ the Jacobian matrix of the restriction of $\rho f \sigma$ to a submanifold $\{x\} \times S(0, \varepsilon)$ of $S^1 \times S(0, \varepsilon)$ has maximal rank. Also each restriction map $\rho f \sigma | (S^1 \times \{t\})$ is constant, and thus $\rho f \sigma (S^1 \times S(0, \varepsilon))$ is C^2 diffeomorphic to $S(0, \varepsilon)$, and $\rho f \sigma$ is the natural projection map. Conclusion (2)(ii) follows.

2.3. Remarks. Note that if M^n and N^n are oriented, then [28, p. 127, Theorem 4.2] a C^2 monotone map f is onto if and only if the degree of f is ± 1 , and is not onto if and only if deg f=0.

If f is C^n monotone and open, then f is a homeomorphism. This statement is an immediate consequence of the structure theorem for proper open maps [7, p. 91].

- 2.4. REMARK. Let M^n and N^n be C^{∞} manifolds, and let $f: M^n \to N^n$ be a proper map C^{∞} except on $f^{-1}(y_i)$ (i=1, 2, ..., k). By the argument of [7, p. 95, (3.3)] there is a homeomorphism $h: N^n \to N^n$ such that hf is C^{∞} and the restriction $h[N^n \bigcup_{i=1}^k \{y_i\}]$ is a C^{∞} diffeomorphism.
- 2.5. EXAMPLES. Differentiable monotone maps which are not acyclic (integral \widehat{C} ech cohomology). Let $p \in S^k$, $q \in S^m$, $r \in S^{k+m}$; and let $S^k \vee S^m$ be the subset $(\{p\} \times S^m) \cup (S^k \times \{q\}) \subset S^k \times S^m$. There is a C^{∞} diffeomorphism g of $S^k \times S^m (S^k \vee S^m)$ onto $S^{k+m} \{r\}$; define $f: S^k \times S^m \to S^{k+m}$ by $f(S^k \vee S^m) = \{r\}$ and elsewhere f is g (topologically, f is the smash product map). Then f is C^{∞} except on $f^{-1}(r)$, and by (2.4) it may be supposed to be C^{∞} . In particular, we observe that the hypothesis $\dim(B_f) \leq n-2$ is not sufficient to imply that f is acyclic if $n \geq 4$ (see (1.1)).
- 2.6. THEOREM. If f is C^2 quasi-monotone, then there exists a natural number k such that: (a) for every $y \in N^n$, $f^{-1}(y)$ has at most k components; and (b) for every $y \in N^n f(R_{n-2}(f))$, $f^{-1}(y)$ has exactly k components, each a point or a C^2 embedding of [0, 1].

Suppose that M^n and N^n are oriented. (c) If the Jacobian determinant $J \ge 0$ or $J \le 0$ at every point of M^n , then $k = |\deg f|$. (d) If f is monotone, then $J \ge 0$ or $J \le 0$ at every point.

Proof. If $f: M^1 \to N^1$ is a proper quasi-monotone map, then either $M^1 = N^1 = E^1$ or $M^1 = N^1 = S^1$. In the former case f is monotone onto; in the latter case f = hg, where $g: S^1 \to S^1$ is monotone onto, and $h: S^1 \to S^1$ is a finite-to-one covering map [32, p. 153, (8.4)]. In either case the conclusions of the theorem are satisfied, so that we may suppose that $n \ge 2$.

See (1.6). Let $y(i) \in M^n - f(R_{n-2}(f))$ be distinct points, and let ρ and σ be the maps given by (2.1)(b) and (c) with $\rho f \sigma$: $L^1 \times E^{n-1} \to S^1 \times E^{n-1}$. Since

$$\rho f \sigma | (L^1 \times \{0\}) \colon L^1 \times \{0\} \to S^1 \times \{0\}$$

is quasi-monotone [32, p. 152, (*)] and $\rho(y(i)) \in S^1 \times \{0\}$, $\sigma^{-1}(f^{-1}(y(i)))$ have the same number of components (i=1, 2). Conclusion (b) follows.

Suppose that $u \in f(R_{n-2}(f))$ and $f^{-1}(u)$ has (at least) k+1 components, U_i ($i=1,2,\ldots,k+1$). There exists an open n-cell E about u such that the U_i are contained in different components of $f^{-1}(E)$; since f is quasi-monotone, for each $y \in E$, $f^{-1}(y)$ has at least k+1 components. Since $\dim(f(R_{n-2}(f))) \le n-2$ [25, p. 173, Theorem 2], a contradiction of the choice of k results. Thus (a) is proved.

Now suppose that M^n and N^n are connected and oriented. Since $\dim(f(R_{n-1}(f))) \le n-1$, there exists $y \in N^n - f(R_{n-1}(f))$; $f^{-1}(y)$ consists of exactly k points, and if $J \ge 0$ or $J \le 0$ at every point of M^n , then $k = |\deg f|$ [28, p. 127, Theorem 4.2].

Suppose that M^n and N^n are connected and oriented, and that f is monotone. If f is not onto, then $J \equiv 0$ ((2.2), (2i)); thus we may suppose that f is onto, and thus quasi-monotone [32, p. 151]. Suppose that there exist points x_1 and x_2 in M^n at which J > 0 and J < 0, respectively. Since f is monotone, $f(x_i) \notin f(R_{n-1}(f))$. Let ρ and σ be the maps given by (2.1)(b) and (c) for $y(i) = f(x_i)$. Since f is monotone onto, $L^1 = S^1$ and $\rho f \sigma | (S^1 \times \{0\})$ is monotone onto. Its derivative does not change sign, so the Jacobian determinant of $\rho f \sigma$ does not change sign on $S^1 \times \{0\}$, and a contradiction of the choice of the x_i results. Thus (d) is proved.

2.7. Remarks. Conclusion (d) cannot be extended to quasi-monotone maps [6, (12)] (but see [6, (3) and (4)]). The same example shows that conclusion (c) is false if J changes sign.

In case n=2 (2.6) is related to [34, p. 665, (3.8) and (3.9)] and to [34, p. 671, (4.7)]. One can show by example that (2.6) is false for C^{∞} quasi-monotone proper maps $f: M^m \to N^n$ where m > n; in particular, the number of components of $f^{-1}(y)$ for y a regular value (i.e., $y \in N^n - f(R_{n-1})$) is not independent of y.

If f is C^2 quasi-monotone, then it follows from (b) and [8, p. 371, (2.1)] that the restriction map $f|[M^n-f^{-1}(f(R_{n-2}(f)))]|$ has the factorization of [8].

2.8. COROLLARY. If M^n and N^n are oriented, f is C^2 , $\dim(B_f) \le n-2$, and $\deg f = \pm 1$, then f is monotone (onto).

Proof. Since $\dim(B_f) \le n-2$, the Jacobian determinant $J \ge 0$ or $J \le 0$; thus [28, p. 127, Theorem 4.2] for each $y \in N^n - f(R_{n-1})$, $f^{-1}(y)$ consists of exactly one point. Since f is quasi-monotone [8, p. 380, (3.2)], in (2.6) k = 1, so that f is monotone onto.

2.9. REMARK. If f is C^2 with $\dim(B_f) \le n-2$ and N^n is orientable, then M^n is orientable.

Without the hypothesis that $\dim(B_f) \le n-2$, the last statement is false (2.15). The covering of the projective plane is a counterexample to the converse statement.

Proof. See (1.5). Suppose M^n is not orientable; then there is a simplicial map $\alpha: S^1 \to M^n$ around which the orientation changes, and we may suppose that $\alpha(S^1) \cap B_h = \emptyset$. The orientation of N^n changes around $f\alpha$, and a contradiction results.

2.10. The proof of (1.3). See (1.6). We may suppose that $\deg f > 0$. We first prove the theorem in case n = 1. Let $y \in N^1$, and let $J \subset N^1$ be a closed interval such that $y \in \operatorname{int} J$ and the endpoints a_r of J (r = 1,2) are regular values [28, p. 47, Theorem 3.1]. Let A_s $(s = 1, 2, \ldots, m)$ be the components of $f^{-1}(\operatorname{int} J)$; since $\deg f > 0$, each \overline{A}_s is a closed interval. From [28, p. 127, Theorem 4.2] $\deg f = \sum_s \deg(f|A_s)$, and to prove that $f^{-1}(y)$ has at least $\deg f$ components, it suffices to prove the corresponding result for each map $f|A_s:A_s \to \operatorname{int} J$. Since f is proper, $f^{-1}(\{a_1,a_2\}) \cap \overline{A}_s$ consists of the two endpoints of \overline{A}_s . If, for either f, $f^{-1}(a_r)$ consists of both endpoints, then $\deg(f|A_s) = 0$, and the conclusion is vacuously satisfied; otherwise, $\deg(f|A_s) = \pm 1$ and $f(A_s) = J$, so that again the conclusion is clearly satisfied.

Now suppose that $n \ge 2$, and there is a point $y \in N^n - f(R_{n-2}(f))$ such that $f^{-1}(y)$ has less than $\deg f$ components. Let y_1 be a regular value of f; $f^{-1}(y_1)$ consists of a finite number j of points, and by [28, p. 127, Theorem 4.2] $j \ge \deg f$. In particular, $y_1 \ne y$. Let σ and ρ be the maps given by (2.1)(c) for y and y_1 ; then $\rho f \sigma : L^1 \times E^{n-1} \to S^1 \times E^{n-1}$ with $\rho f \sigma(L^1 \times \{t\}) \subset S^1 \times \{t\}$ for each $t \in E^{n-1}$. Let L_s (s=1, 2, ..., m) be the components of L^1 . Since $L^1 \times \{t\}$ contains a regular value of $t \in L^1 \times \{t\}$ contains an edge of $t \in L^1 \times \{t\}$ contains a regular value of $t \in L^1 \times \{t\}$ contains a regular value of $t \in L^1 \times \{t\}$ contains a regular value of $t \in L^1 \times \{t\}$ contains a regular value of $t \in L^1 \times \{t\}$ contains a regular value of $t \in L^1 \times \{t\}$ so that $t \in L^1 \times \{t\}$ contains a regular value of $t \in L^1 \times \{t\}$ so that $t \in L^1 \times \{t\}$ contains a regular value of $t \in L^1 \times \{t\}$ so that $t \in L^1$

Analogous questions for simplicial maps are discussed by Hopf in [14].

- 2.11. THEOREM. Let M^n be compact, let $n \ge 2$, let f be C^2 quasi-monotone, and let V be an m-dimensional vector space over a field F. Let k be the natural number of (2.6), and let $r = \dim(H^{n-1}(M^n; V))$.
 - (a) Then $H^{n-1}(f^{-1}(y); V) = 0$ for all but at most mk + r points $y \in N^n$.
- (b) If M^n is orientable or if $F=Z_2$, then $H^{n-1}(f^{-1}(y); V)=0$ for all but at most m(k-1)+r points $y \in N^n$; in particular, if f is monotone onto, then

$$i^*: H^{n-1}(M^n; V) \to \sum_{y \in N^n} H^{n-1}(f^{-1}(y); V),$$

(induced by inclusion) is an epimorphism.

Proof. Suppose that there are distinct points y_s (s=1, 2, ..., t) such that $H^{n-1}(f^{-1}(y_s); V) \neq 0$; let $Y = \bigcup_s f^{-1}(y_s)$. Since $H^{n-1}(Y; V) \approx \sum_s H^{n-1}(f^{-1}(y_s); V)$, $\dim(H^{n-1}(Y; V)) \geq t$; from the exactness of the cohomology sequence of (M^n, Y) , $\dim(H^{n-1}(Y; V)/\text{imag } i^*) \geq t - r$, so that $\dim(\ker j^*) \geq t - r$. Since f is quasimonotone, $M^n - Y$ has at most k components (2.6); thus $\dim(H^n(M^n, Y; V)) \leq mk$. Since $\ker j^*$ is a subspace, $mk \geq t - r$, i.e., $mk + r \geq t$.

If M^n is orientable, or if $F=Z_2$, then $H^n(M^n; V)\approx V$, $H^n(M^n, Y; V)$ is isomorphic to the direct sum of at most k copies of V, and ker j^* is isomorphic to the direct sum of at most k-1 copies of V; thus $m(k-1)+r\geq t$. If in addition f is monotone, then j^* is an isomorphism, so that i^* is an epimorphism.

The theorem is a generalization of [8, p. 372, (2.3)]. Example (2.14) with $V=Z_3$ shows that the orientability hypothesis is required in (b).

2.12. EXAMPLE. No analogous statement can be made for $H^k(M^n)$ with $k=1, 2, \ldots, n-2$. Let $g: S^1 \times S^1 \to S^2$ be the map given in (2.5) (for k=m=1), and let $\rho_i: S^1 \times S^1 \to S^1$ be the projection maps (i=1, 2). Let M_i be the mapping cylinder of ρ_i (a solid torus), let N_i be the mapping cylinder of a constant map on S^2 (i.e., a cone over S^2), and let M^3 (resp., N^3) be the natural union of the M_i (resp., N_i), i=1, 2; then M^3 and N^3 are each diffeomorphic to S^3 . Let $f: M^3 \to N^3$ be the map induced by g. Since g is C^{∞} , f is C^{∞} except at $f^{-1}(q_i)$, where q_i (i=1, 2) are the poles of N^3 as a suspension over S^2 . From (2.4) we may suppose that f is C^{∞} . For uncountably many points $y \in N^3$, $f^{-1}(y)$ is homeomorphic to $S^1 \vee S^1$; thus $H^1(f^{-1}(y); Z_2) \approx Z_2 \oplus Z_2$ while $H^1(M^3; Z_2) = 0$.

Analogous examples are obtained from the other maps of (2.5), and suspensions of them.

2.13. Remark. Let M^n be oriented, let f be C^1 monotone onto, let G be a principal ideal domain, and let Čech homology and cohomology with compact supports be denoted by H_k^c and H_c^k , respectively. Then

(a)
$$0 \longrightarrow \ker f_* \longrightarrow H_k^c(M^n; G) \xrightarrow{f_*} H_k^c(N^n; G) \longrightarrow 0$$

and

(b)
$$0 \longrightarrow H_c^k(N^n; G) \xrightarrow{f_*} H_c^k(M^n; G) \longrightarrow \operatorname{coker} f^* \longrightarrow 0$$

are split exact sequences (k=0, 1, ...).

By Sard's Theorem [28, p. 47, Theorem 3.1] the hypothesis of [18, p. 639, Theorem 3] is satisfied, and the remark is an immediate consequence of (the proof of) conclusion (1) of that theorem ((1) follows from the naturality of the Poincaré Duality (cap product) isomorphism).

- 2.14. Example. The hypothesis that M^n is oriented is necessary. Let S^1 be the canonical circle in the projective plane P^2 , and let $f: P^2 \to S^2$ be the monotone (onto) map for which $B_f = S^1$ and $f(S^1)$ is a point. From (2.4) we may suppose that f is C^{∞} , while (a) is not satisfied for k = 2. See also (2.9).
- 2.15. Example. In view of (2.11) it is natural to ask whether in (2.13 (b)) for k=(n-1) coker f^* is $\sum_{y\in N^n} H^{n-1}(f^{-1}(y);G)$, i.e., is the sequence

$$0 \longrightarrow H^{n-1}(N^n;G) \xrightarrow{f^*} H^{n-1}(M^n;G) \xrightarrow{i^*} \sum_{y \in N^n} H^{n-1}(f^{-1}(y);G) \longrightarrow 0$$

exact? The following example provides a negative answer.

Let T^2 be the torus, let $g: T^2 \to S^2$ be the map given in (2.5) for k=m=1, and let $f: T^2 \times S^1 \to S^2 \times S^1$ be defined by f(u, v) = (g(u), v). Then

$$\sum_{y \in S^2 \times S^1} H^2(f^{-1}(y); Z_2) = 0,$$

while $H^2(T^2 \times S^1; Z_2)$ is not isomorphic to $H^2(S^2 \times S^1; Z_2)$.

3. Technical lemmas. The results of this section are needed for §4.

Given C^r manifolds M^m and N^n , let $\mathbf{C}^r(M^m, N^n)$ be the space of C^r maps $f: M^m \to N^n$ with the fine C^r topology (r=0, 1, ...). (The fine and coarse C^r topologies are defined in [22, pp. 25–28].) Let $\mathfrak{R}^r(M^m)$ be the set of those open neighborhoods U of the identity map $I \in \mathbf{C}^r(M^m, M^m)$ such that, if $\chi \in U$, then χ is a diffeomorphism [22, p. 29, (3.10)].

- 3.1. Lemma. Given the hypotheses of [22, p. 40, (4.7)], let $U \in \mathbb{R}^r(E^n)$, and let $Z \subseteq E^n$ be a bounded open neighborhood of $f(\overline{V})$. Then there is a C^r diffeomorphism $\chi \in U$ such that
 - (a) $\chi f = h$ satisfies the conclusions of [22, p. 40, (4.7)],
 - (b) χ is the identity map I off Z, and
 - (c) $\chi(\lbrace t\rbrace \times E^{n-m}) = \lbrace t\rbrace \times E^{n-m}$ for each $t \in E^m$.

Proof. In [22, p. 35, (4.1)] f_1 may be chosen to approximate f in the coarse C^r topology.

With g, π , and \emptyset as in the proof of [22, p. 40, (4.7)] and $\alpha > 0$, define

$$A_{\alpha} = \{x \in \pi^{-1}(\mathcal{O}) : |x - g(\pi(x))| < \alpha\},\$$

and choose $\alpha > 0$ such that the closure $\text{Cl}[A_{\alpha} \cap \pi^{-1}(\pi(f(V)))] \subset Z$. Let $X = A_{\alpha}$, and let $Y = E^{n} - \text{Cl}[A_{\beta} \cap \pi^{-1}(\pi(f(V)))]$ for any β with $0 < \beta < \alpha$.

Let $\{\phi, 1-\phi\}$ be a C^{∞} partition of unity dominated by the open cover $\{X, Y\}$ of E^n . We may suppose that U is sufficiently small that if $\chi \in U$, then $\chi(f(\overline{V})) \subseteq A_{\beta}$. For any C^r map $\psi \colon E^n \to E^n$ the map χ_{ψ} defined by $\chi_{\psi}(x) = \phi(x) \cdot \psi(x) + (1 - \phi(x)) \cdot x$ agrees with I off the compact set \overline{X} ; thus there is a neighborhood V of I in the coarse C^r topology such that, if $\psi \in V$, then $\chi_{\psi} \in U$.

In the proof of [22, (4.7)] define $\psi: E^n \to E^n$ by $\psi(x) = x + \tilde{g}(\pi(x)) - g(\pi(x))$ for $x \in \pi^{-1}(\mathcal{O})$, and $\psi(x) = x$ elsewhere. If δ is chosen sufficiently small, and \tilde{g}_0 is chosen to be an ε -approximation to g_0 in the coarse C^r topology, then ψ will be in V; moreover $\psi(\{t\} \times E^{n-m}) = \{t\} \times E^{n-m}$ for each $t \in E^m$. The map $\chi = \chi_{\psi}$ is thus a C^r diffeomorphism satisfying conclusion (c).

By its definition χ is the identity off X; since ψ is the identity off $\pi^{-1}(\pi(f(V)))$, it follows that χ is also. Thus χ satisfies conclusion (b) also. Since $\chi(f(\overline{V})) \subset A_{\beta}$ and χ satisfies conclusion (c), $\chi(f(\overline{V})) \cap \overline{Y} = \emptyset$; since $\psi = I$ off $\pi^{-1}(\pi(f(V)))$, $\chi f = \psi f$, and one may readily verify that χf satisfies the conclusions of [22, (4.7)].

3.2. Lemma. Let L^p and M^{n-p} be C^{∞} manifolds, let $V \in \mathfrak{N}^r(L^p \times M^{n-p})$, and let Γ^q $(q \ge n-p)$ be a C^r $(r=1,2,\ldots)$ submanifold of $L^p \times M^{n-p}$ transverse to $L^p \times \{t\}$ for each $t \in M^{n-p}$. Then there exists $\psi \in V$ such that:

- (a) $\psi(\Gamma^q)$ is a C^{∞} submanifold of $L^p \times M^{n-p}$;
- (b) $\psi(\Gamma^q)$ is transverse to $L^p \times \{t\}$ for each $t \in M^{n-p}$;
- (c) $\psi(L^p \times \{t\}) = L^p \times \{t\}$ for each $t \in M^{n-p}$.

The manifold M^{n-p} may be a single point, in which case the transversality condition is vacuous; thus the lemma includes [8, p. 376, (2.5)].

Proof. Given $(x, t) \in \Gamma^q$, $x \in L^p$ and $t \in M^{n-p}$, let $(P \times Q, \alpha \times \beta)$ be a C^∞ coordinate pair, where P (resp., Q) is an open neighborhood of x (resp., t) in L^p (resp., M^{n-p}) and α (resp., β) is a C^∞ diffeomorphism of P (resp., Q) onto $\alpha(P) \subset E^p$ (resp., $\beta(Q) \subset E^{n-p}$) with $\alpha(x) = 0$ (resp., $\beta(t) = 0$). Since Γ^q is transverse to $L^p \times \{t\}$ at (x, t), there is a coordinate plane $E^{p+q-n} \subset E^p$ (if q=n-p, then E^{p+q-n} is the origin O of E^p) and a neighborhood $T \subset \Gamma^q$ of (x, t) such that $T \subset P \times Q$ and the projection of $\alpha \times \beta(T)$ onto $E^{p+q-n} \times E^{n-p}$ is a C^r embedding. Let $\pi: E^n \to E^q = E^{p+q-n} \times E^{n-p}$ be projection. Let (R, γ) be a C^r coordinate pair of Γ^q , i.e., γ is a C^r diffeomorphism of R onto $\gamma(R) \subset E^q$, with $(x, t) \in R$, R compact, and $R \subset T$.

The sets R for $(x, t) \in \Gamma^q$ cover Γ^q , and so there is a locally finite subcover R_i $(i=1, 2, \ldots)$; let P_i , Q_i , T_i , α_i , β_i , γ_i , π_i be the sets and functions thus defined. Let $U_i = \gamma_i(R_i) \subset E^q$, and let V_i and W_i be open subsets of U_i such that $\overline{W}_i \subset V_i$, $\overline{V}_i \subset U_i$, and the sets $\gamma_i^{-1}(W_i)$ cover Γ^q [22, p. 7]. Let X_i be an open subset of $L^p \times M^{n-p}$ such that $\overline{X}_i \subset P_i \times Q_i$, $\gamma_i^{-1}(\overline{V}_i) \subset X_i$, $\overline{X}_i \cap \Gamma^q \subset \gamma_i^{-1}(U_i)$, and the sets \overline{X}_i are locally finite $(i=1, 2, \ldots)$.

We may suppose that V is sufficiently small that, for each $\psi \in V$, conclusion (b) is satisfied, $\psi(\overline{X}_i) \subseteq P_i \times Q_i$, and $\pi_i \circ (\alpha_i \times \beta_i) \circ \psi \circ \gamma_i^{-1}$ is an embedding. Moreover we may suppose that V is a basis neighborhood $(X(f, \delta_i))$ in [22, p. 26]).

We will define $\psi_i \in V$ $(i=0,1,\ldots;\psi_0=I)$ such that (1) ψ_i agrees with ψ_{i-1} off \overline{X}_i , (2) $\psi_i(\bigcup_{j \leq i} \gamma_j^{-1}(W_j))$ is a C^{∞} submanifold of $L^p \times M^{n-p}$, and (3) $\psi_i(L^p \times \{t\}) = L^p \times \{t\}$ for each $t \in M^{n-p}$. Because the \overline{X}_i are locally finite, the limit map ψ is a well-defined C^r map; since each ψ_i is in the basis neighborhood V, $\psi \in V$ also. The remaining properties of ψ follow immediately. (Note that $\psi_i \mapsto \psi$ in the fine C^r topology necessarily!)

The construction of the maps ψ_i is by induction; $\psi_0 = I$; suppose that ψ_{i-1} has been defined. Let $f = (\alpha_i \times \beta_i) \circ \psi_{i-1} \circ \gamma_i^{-1}$, let $Z \subseteq E^n$ be $\alpha_i \times \beta_i(\psi_{i-1}(X_i))$, and let $\chi \in U$ be given by (3.1), where $U \in \mathcal{N}^r(E^n)$ is to be defined. For $x \notin X_i$ let $\psi_i(x) = \psi_{i-1}(x)$; for $x \in \overline{X_i}$, let

$$\psi_{\mathbf{i}}(x) = (\alpha_{\mathbf{i}} \times \beta_{\mathbf{i}})^{-1} \circ \chi \circ (\alpha_{\mathbf{i}} \times \beta_{\mathbf{i}}) \circ \psi_{\mathbf{i}-1}(x).$$

Then ψ_i is a well-defined C^r map, and if the U of (3.1) is sufficiently small, $\psi_i \in V$. Properties (1) and (3) follow readily. Since $\overline{X}_i \cap \Gamma^q \subset \gamma_i^{-1}(U_i)$, it follows from (1) and the inductive hypothesis that

$$\psi_i\left(\left(\bigcup_{j\leq i}\gamma_j^{-1}(W_j)\right)-\gamma_i^{-1}(U_i)\right)$$

is a C^{∞} submanifold of $L^p \times M^{n-p}$; that

$$\psi_i(\gamma_i^{-1}(U_i)\cap\bigcup_{j\leq i}\gamma_j^{-1}(W_j))$$

is C^{∞} also follows from (3.1)(a)(3) and (a)(4).

- 3.3. LEMMA. Let L^p be a compact C^r manifold (p=1, 2, ..., n-1; r=1, 2, ... or $r=\infty$; $\partial L^p=\varnothing$), and let $A_i \subseteq L^p \times E^{n-p}$ (i=1, 2, ..., m) be C^r submanifolds with $\partial A_i = \varnothing$ such that:
 - (a) each A_i is a closed subset of $L^p \times E^{n-p}$,
 - (b) each A_i is transverse to $L^p \times \{t\}$ (for each $t \in E^{n-p}$),
 - (c) each $A_i \cap (L^p \times \{0\}) = K_i$ is a compact C^r manifold, $\partial K_i = \emptyset$, and
 - (d) the A_i are mutually disjoint.

Then there is a C^r diffeomorphism η of $L^p \times E^{n-p}$ onto itself such that $\eta(K_i \times E^r) = A_i$ and $\eta(L^p \times \{t\}) = L^p \times \{t\}$ $(t \in E^{n-p}; i = 1, 2, ..., m)$.

The manifolds A_i may have different dimensions; a useful case is that for which $A_i = \partial B_i$ and $\dim(B_i) = n$.

Proof. See (1.5). We may suppose that L^p is a C^{∞} Riemannian manifold and that $L^p \times E^{n-p}$ has the product Riemannian metric. By (3.2) we may suppose that $r=\infty$; let $q_i = \dim(A_i)$.

For each $(x, t) \in A_k$ there is U(x, t) open in $L^p \times E^{n-p}$ such that $(x, t) \in U(x, t)$, $U(x, t) \cap A_k$ is a C^{∞} diffeomorph of $\operatorname{int}(D^{q_k})$, and $U(x, t) \cap A_i = \emptyset$ for $i \neq k$. The sets U(x, t) cover $\bigcup_i A_i$; let U_r $(r=1, 2, \ldots)$ be a locally finite subcover, where U_r meets (only) $A_{k(r)}$. Since the normal bundle of $U_r \cap A_{k(r)}$ in U_r is trivial, there is a tubular neighborhood V_r of $U_r \cap A_{k(r)}$ and a C^{∞} diffeomorphism ρ_r of V_r onto $\operatorname{int}(D^{q_{k(r)}}) \times E^{n-q_{k(r)}}$; let π_r be the projection of $D^{q_{k(r)}} \times E^{n-q_{k(r)}}$ onto $E^{n-q_{k(r)}}$. For each $s \in E^{n-q_{k(r)}}$, $\rho^{-1}(\pi^{-1}(s))$ is an open $q_{k(r)}$ -cell, and by choosing V_r sufficiently small about $U_r \cap A_{k(r)}$, we may suppose that $\rho^{-1}(\pi^{-1}(s))$ is transverse to $L^p \times \{t\}$ for each $t \in E^{n-p}$. For each $(x, t) \in V_r$, let $J_r(x, t)$ be that set $\rho^{-1}(\pi^{-1}(s))$ containing (x, t).

Let t^j (j=1, 2, ..., n-p) be the usual coordinates on E^{n-p} , and let $\partial/\partial t^j$ be the corresponding vector fields in $L^p \times E^{n-p}$. For $(x, t) \in V_r$ let $P_r(x, t)$ be the ((n-p)-dimensional) vector space orthogonal to the tangent space

$$T_{(x,t)}(J_t(x,t)\cap (L^p\times\{t\}))$$

in $T_{(x,t)}J_r(x,t)$. Since

$$T_{(x,t)}(L^p \times E^{n-p}) = T_{(x,t)}J_{\tau}(x,t) + T_{(x,t)}(L^p \times \{t\}),$$

it is the direct sum $P_r(x, t) \oplus T_{(x,t)}(L^p \times \{t\})$. It follows that orthogonal projection

of $P_r(x, t)$ onto $T_{(x,t)}(\{x\} \times E^{n-p})$ is an isomorphism; let $u_{j,r}(x, t)$ be the vector in $P_r(x, t)$ which projects onto $\partial/\partial t^j(x, t)$. Then $u_{j,r}$ is a C^{∞} vector field with domain $V_r(j=1, 2, \ldots, n-p; r=1, 2, \ldots)$.

Let $V_0 = (L^p \times E^{n-p}) - \bigcup_i A_i$, let β_r (r=0, 1, ...) be a C^{∞} partition of unity dominated by V_r , and let

$$v_j = \beta_0 \, \partial/\partial t^j + \sum_{r=1}^{\infty} \beta_r u_{j,r} \qquad (j=1,2,\ldots,n-p).$$

Then the projection of each $v_j(x, t)$ on $T_{(x, b)}(\{x\} \times E^{n-p})$ is $\partial/\partial t^j(x, t)$, and v_j agrees with $u_{j,r}$ on $V_r \cap A_{k(r)}$. Let $\phi_{j,s}$ $(j=1, 2, \ldots, n-p)$; $s \in L^p \times E^{n-p}$ be the one-parameter group of diffeomorphisms associated with v_j [21, p. 10, (2.4)], and define η by

$$\eta(x, t) = (\phi_{n-p,t^{n-p}} \circ \cdots \circ \phi_{2,t^2} \circ \phi_{1,t^1}(x, 0), t),$$

where $t = (t^1, t^2, \dots, t^{n-p})$ and composition is denoted by \circ .

3.4. LEMMA. Let $f: M^m \to N^n$ be a C^k proper map $(k=1, 2, ...; m \ge n)$. Let K_i (i=0, 1, ..., s) be compact C^k submanifolds of N^n such that $\partial K_i = \emptyset$, f is transverse regular on K_i , $K_i \subset K_0 = K_0^p$, and the K_i with i > 0 are mutually disjoint; let ρ be a C^k diffeomorphism mapping a neighborhood of K_0^p onto $K_0^p \times E^{n-p}$ with $\rho(x) = (x, 0)$ for $x \in K_0^p$.

Then there exist $\varepsilon > 0$ and a C^k diffeomorphism ω of $f^{-1}(K_0^p) \times S(0, \varepsilon)$ onto a neighborhood of $f^{-1}(K_0^p)$ such that for $h = \rho f \omega$ and each $t \in S(0, \varepsilon)$ and i = 0, 1, ..., s:

- (a) $h(f^{-1}(K_0^p) \times \{t\}) = K_0^p \times \{t\},$
- (b) $h^{-1}(K_i \times S(0, \varepsilon)) = f^{-1}(K_i) \times S(0, \varepsilon)$, and
- (c) h is transverse regular on $\partial K_i \times \{t\}$.
- (d) If $K_i = \partial \Gamma_i^p$ with $\Gamma_i^p \subset K_0^p$, then

$$h^{-1}(\Gamma_i^p \times S(0, \varepsilon)) = f^{-1}(\Gamma_i^p) \times S(0, \varepsilon).$$

By $[29, p. 23] f^{-1}(K_i)$ is a C^k manifold; the dimensions of the K_i may be different. **Proof.** The proof of [8, p. 376, (2.7)] actually yields the stronger analogous result for maps $f: M^q \to N^n$ with $q \ge n$; the dimension of L is then p+q-n. Thus there are $\varepsilon > 0$ and a C^k diffeomorphism σ of $f^{-1}(K_0^p) \times S(0, \varepsilon)$ onto a neighborhood of $f^{-1}(K_0^p)$ such that $\rho f \sigma(f^{-1}(K_0^p) \times \{t\}) = K_0^p \times \{t\}$ for each $t \in S(0, \varepsilon)$. For ε sufficiently small $\rho f \sigma$ is transverse regular on $K_i^p \times \{t\}$ ($t \in S(0, \varepsilon)$; $i = 1, 2, \ldots, s$), and thus is transverse regular on $K_i^p \times S(0, \varepsilon)$. Hence, for each i, either $(1) \sigma^{-1}(f^{-1}(\rho^{-1}(K_i \times S(0, \varepsilon))))$ is a C^k manifold A_i which is a closed subset of

$$\sigma^{-1}(f^{-1}(\rho^{-1}(K_0^p \times S(0, \varepsilon)))) = f^{-1}(K_0) \times S(0, \varepsilon)$$

and is transverse to $f^{-1}(K_0^p) = \{t\}$ for each $t \in S(0, \varepsilon)$, or (2) it is empty.

There is a C^k diffeomorphism η of $f^{-1}(K_0^p) \times S(0, \varepsilon)$ onto itself given by (3.3) for all the *i* satisfying (1). Let $\omega = \sigma \eta$; it follows readily that ω has the desired properties.

- 3.5. Lemma. Let $f: M^m \to N^n$ be C^k $(k \ge p+1)$, and let $\lambda: D^p \to N^n$ be a C^k embedding with f transverse regular on $\lambda(D^p)$ (p < n). Then there is a C^k diffeomorph Σ of S^p such that $\lambda(D^p) \subset \Sigma$, the normal bundle of Σ is trivial, and f is transverse regular on Σ .
- **Proof.** See (1.5). There is a C^k embedding μ of D^n (and, in fact, of $S(0, 1+\varepsilon) \subset E^n$ for some $\varepsilon > 0$) which extends λ [24]. Thus there is a C^k embedding $\nu : S^p \to N^n$ such that $\lambda(D^p) \subset \nu(S^p)$ and the normal bundle of $\nu(S^p)$ is trivial.
- Let T be a tubular neighborhood of $\nu(S^p) \lambda(D^p)$ with $T \cap \lambda(D^p) = \emptyset$; by the proof of [29, p. 26] there is a C^k diffeomorphism A of N^n onto itself such that A is the identity map off T, and f is transverse regular on $A^{-1}(\nu(S^p) \lambda(D^p))$. Then $\Sigma = A^{-1}(\nu(S^p))$ has the desired properties.
- 3.6. REMARK. The proof of [8, p. 382, (3.5)] actually shows the following: given $f: M^n \to N^n$ a C^m proper map $(m, n \ge 2)$ with $\dim(B_f) \le n-2$, there exists a C^m proper map $h: M^n \to N^n$ such that (a) $B_h \subset B_f$, (b) $h(B_h) \subset h(R_{n-2}(h))$, and (c) for each $y \in N^n$, $f^{-1}(y)$ and $h^{-1}(y)$ have the same number of components. Moreover, given any positive real-valued map δ defined on M^n , h may be chosen so that, for each $x \in M^n$, $d(h(x), f(x)) < \delta(x)$.
- 4. Differentiable acyclic maps. This section deals with sufficient conditions for a monotone map to be acyclic or cellular.
- 4.1. THEOREM. If f is C^3 monotone with $\dim(B_f) \le n-2$, then the homomorphism $f_*: \pi_1(M^n) \to \pi_1(N^n)$ is an isomorphism (onto).

The condition on B_f is necessary for f_* to be a monomorphism ((2.14) and (4.5)).

Proof. If n=1 or 2, then f is a homeomorphism; thus we may suppose that $n \ge 3$. See (1.5). The map f is onto by (2.2).

Since $\dim(f(R_{n-1}(f))) \le n-1$ [25, p. 173, Theorem 2], we may choose the base points x and y for the fundamental groups so that f(x) = y and $y \notin f(R_{n-1}(f))$. The group $\pi_1(N^n, y)$ is generated by the polyhedral circles through y, and thus by the C^{∞} embeddings $\gamma: S^1 \to N^n$ with $y \in \gamma(S^1)$. We may suppose that f is transverse regular on $\gamma(S^1)$ [29, p. 26]; as a result $f^{-1}(\gamma(S^1))$ is C^2 diffeomorphic to S^1 [29, p. 23], and defines an element of $\pi_1(M^n, x)$. Thus f_* is an epimorphism (independent of hypothesis on B_f).

Now we prove that f_* is a monomorphism. For each $x \in M^n$ let $\delta(x) = r(f(x))$, where r is a positive continuous function on N^n less than the number of [17, p. 165, (3.4)]; let h be the C^3 map of (3.6). If we use the unique geodesic joining f(x) to h(x) in the normal neighborhood $U(f(x), \delta(x))$ of [17, p. 165, (3.4)], a homotopy between f and h is constructed, so that $f_* = h_*$. As a result, we may as well suppose that f = h, i.e., that $f(B_f) \subset f(R_{n-2}(f))$, so that [25, p. 173, Theorem 2] $\dim(f(B_f)) \leq n-2$. Since f is monotone, $B_f = f^{-1}(f(B_f))$.

Let $\alpha \in \pi_1(M^n, x)$ with $f_*(\alpha) = 0$. As above α has a representative $\mu : S^1 \to M^n$

which is a polyhedral embedding, and we may suppose that $\mu(S^1) \cap B_f = \emptyset$. Let D^2 be the unit 2-disk with boundary S^1 . Since $f\mu$ is homotopic to a constant map, there exists a map $F: D^2 \to N^n$ such that the restriction $F|S^1 = f\mu$. There exists a simplicial approximation G to F such that $G(S^1) \cap f(B_f) = \emptyset$ and $f^{-1}G|S^1$ is a representative of α also. Let ξ be a C^3 diffeomorphism of N^n onto itself such that f is transverse regular on each (open) simplex of $\xi^{-1}G(D^2)$ [29, p. 26 and p. 27] (e.g., see the proof of [9, Lemma 3]); choose ξ sufficiently near the identity that $f^{-1}\xi^{-1}G|S^1$ is again a representative of α . Since $f(B_f) \subset f(R_{n-2}(f))$, the 1-skeleton of $\xi^{-1}(G(D^2))$ is disjoint from $f(B_f)$. For each closed 2-simplex τ of $\xi^{-1}G(D^2)$, $f^{-1}(\tau)$ is a (topological) embedding of a 2-manifold with boundary homeomorphic to S^1 [29, p. 23]. If $f^{-1}(\tau)$ is a 2-cell for each such 2-simplex τ , then $\alpha = 0$. Thus we may suppose that for some τ , $f^{-1}(\tau)$ is not a closed 2-cell; we will obtain a contradiction.

There is a C^3 diffeomorph $E \subset N^n$ of E^2 such that $\tau \subset E$ and f is transverse regular on E; we may suppose (3.2) that E is a C^∞ submanifold of N^n . Since bdy $\tau \cap f(B_f) = \emptyset$, there is a C^∞ embedding λ of the closed unit disk D^2 into E such that $\lambda(D^2) \subset \operatorname{int} \tau$ and $(\tau - \lambda(\operatorname{int} D^2)) \cap f(B_f) = \emptyset$; by [29, p. 26] we may suppose that f is transverse regular on $\lambda(\partial D^2)$. Then $f^{-1}(\tau)$ is a 2-cell if and only if $f^{-1}(\lambda(D^2))$ is also a 2-cell, so that we may as well suppose that $\tau = \lambda(D^2)$; let $J^2 = f^{-1}(\tau)$.

Let Σ be the diffeomorph of S^2 given by (3.5), and let h be the C^3 map given by (3.4) for f, $K_0^p = \Sigma$ s = 1, and $K_1^p = \tau$. Let $g: J^2 \times E^{n-2} \to D^2 \times E^{n-2}$ be the restriction of h. Then g is a C^3 monotone onto map, $g(J^2 \times \{t\}) = D^2 \times \{t\}$ for each $t \in E^{n-2}$, $g^{-1}(\partial D^2 \times E^{n-2}) = \partial J^2 \times E^{n-2}$, $n \ge 3$, $\dim(B_g) \le n-2$, and (since g is transverse regular on each $\partial D^2 \times \{t\}$ and $f(B_f) \subseteq f(R_{n-2}(f))$)

$$g(B_g) \subseteq g(R_{n-2}(g)) \cap (\operatorname{int}(D^2) \times E^{n-2}).$$

Let $g_t: J^2 \times \{t\} \to D^2 \times \{t\}$ be the restriction of g, and let $B(g_t)$ be its branch set. Since

$$g(R_{n-2}(g)) \cap ((\text{int } D^2) \times \{t\}) = g_t(R_0(g_t)),$$

 $\dim(g_t(R_0(g_t))) \le 0$ [25, p. 173, Theorem 2], and

$$g_t(B(g_t)) \subseteq g(B_g) \cap ((\text{int } D^2) \times \{t\}),$$

we have $\dim(g_t(B(g_t))) \leq 0$.

Suppose that there is a $t \in E^{n-2}$ such that, for each $y \in D^2$, $H^1(g^{-1}(y, t); Z_2) = 0$. It follows from the Vietoris Mapping Theorem [1] (cf. (4.3)) applied to g_t that $H^1(J^2; Z_2) = 0$; since J^2 is not a 2-cell, a contradiction results. Thus, for each $t \in E^{n-2}$ there exists at least one $y \in D^2$ such that $H^1(g^{-1}(y, t); Z_2) \neq 0$. By [8, p. 372, (2.3)] the number of such y is at most $\dim(H^1(J^2; Z_2))$. A contradiction is now deduced as in the proof of [8, p. 372, (2.4), Second Case]. (Since g is monotone, that proof can be simplified somewhat—in particular, paragraphs three and four can be omitted.)

- 4.2. Lemma. Let f be C^{p+1} monotone with $\dim(B_f) \leq n-2$, let $n \geq 3$, and let B^p be a C^{p+1} diffeomorph of a p-ball in N^n such that f is transverse regular [29, p. 23] on both B^p and the boundary ∂B^p . Then $f^{-1}(B^p)$ and $f^{-1}(\partial B^p)$ are simply connected for $p \geq 3$, and $f^{-1}(B^2)$ is a closed 2-cell.
- **Proof.** The map f is onto by (2.2)(2)(i); by [32, p. 138, (2.2)] $f^{-1}(B^p)$ and $f^{-1}(\partial B^p)$ are connected (for $p \ge 2$) manifolds [29, p. 23].

For p < n let Σ be the C^{p+1} diffeomorph of S^p given by (3.5), and let h be the C^{p+1} map given by (3.4) for f, $K_0^p = \Sigma$ and $K_1 = \partial B^p$. Since $h^{-1}(\text{int}(B^p) \times S(0, \varepsilon)) = f^{-1}(\text{int}(B^p)) \times S(0, \varepsilon)$, it follows from (4.1) that $\pi_1(f^{-1}(\text{int}(B^p))) = 0$; also from (4.1) $\pi_1(f^{-1}(\text{int}(B^n))) = 0$. Since $f^{-1}(\partial B^p)$ is collared in $f^{-1}(B^p)$ [22, p. 51, (5.9)] (or [20, p. 23, (3.6)]), $\pi_1(f^{-1}(B^p)) = 0$. Thus $f^{-1}(B^2)$ is a 2-cell.

For $p \ge 3$ it similarly follows from application of (3.4) to $K_0 = \partial B^p$ that $\pi_1(f^{-1}(\partial B^p)) = 0$.

4.3. Remark. The Vietoris Mapping Theorem. If X and Y are compact metric spaces, and $f: X \to Y$ is acyclic (integral Čech cohomology), then f induces an isomorphism $H^j(X; Z) \approx H^j(Y; Z)$.

To obtain this form of the theorem from that given in [1] use the duality [16, p. 141, (F)] between the Čech homology and cohomology groups $H_f(X; R_1)$ and $H^f(X; Z)$, where R_1 is the group of real numbers modulo 1, and the fact that the modified Vietoris homology groups of [1] agree with the Čech homology groups [1, p. 536].

- 4.4. The proof of (1.1b). The hypothesis that $\dim(B_f) \le n-2$ is required (4.5). Given any compact set $X \subset S^n$ with $S^n X$ C^{∞} diffeomorphic to E^n , it follows from (2.4) that there is a C^{∞} monotone onto map $f: S^n \to S^n$ with $S^n X$ mapped diffeomorphically onto $S^n \{p\}$ and $f(X) = \{p\}$.
- **Proof.** See (1.5); let $y \in N^n$, and let U be a neighborhood of $f^{-1}(y)$ in M^n . Choose a C^{∞} diffeomorph $B^n \subset N^n$ of the closed n-ball $D^n \subset E^n$ such that $y \in \operatorname{int}(B^n)$ and $f^{-1}(B^n) \subset U$; by the Thom Transversality Theorem [29, p. 26] we may suppose that f is transverse regular on ∂B^n . Thus $f^{-1}(\partial B^n)$ is a connected (by (4.3)) C^n (n-1)-manifold [29, p. 23] which separates U, so that $f^{-1}(B^n)$ is a C^n n-manifold with boundary. By (4.3) $f^{-1}(B^n)$ is acyclic, and thus by (4.2) and the Hurewicz Theorem is a homotopy cell. If $n \neq 3$, 4, 5, it follows from the h-cobordism theorem [20, p. 108] that $f^{-1}(B^n)$ is C^n diffeomorphic to the closed n-ball D^n . Since p and p were arbitrary, p has the desired property.
- 4.5. EXAMPLE. An acyclic (integral Čech cohomology) C^{∞} map need not be cellular. Let K^3 be a polyhedral homology 3-sphere [26, pp. 216–218]; there is [5, p. 797] a C^{∞} manifold M^3 homeomorphic with K^3 . By an elementary argument there exists a 2-dimensional subpolyhedron X such that $M^3 X$ is homeomorphic to E^3 (for a more general result in this direction see [11] and [2]); by [23, p. 544, (6.3)] $M^3 X$ is C^{∞} diffeomorphic to E^3 . Define $f: M^3 \to S^3$ by: f(X) is a single point p, and f maps $M^3 X$ C^{∞} diffeomorphically onto $S^3 \{p\}$; by (2.4) we may suppose that f is C^{∞} .

Since $0 = H^2(S^3; Z) \approx H^2(S^3, f(X); Z) \approx H^2(M^3, X; Z)$ [12, p. 266], it follows from the cohomology sequence that $H^1(X; Z) = 0$. From (2.12) (or again from the cohomology sequence), $H^2(X; Z) = 0$. Thus f is acyclic.

If f is cellular, then there is a topological (closed) 3-cell $A \subseteq M^3$ such that $X \subseteq \text{int } A$; there is a bicollared [4, p. 85] 3-cell $B \subseteq \text{int } A$ with $X \subseteq \text{int } B$. From [3] $M^3 - \text{int } A$ (= $E^3 - \text{int } A$) is a closed 3-cell, and thus M^3 is homeomorphic to S^3 , contradicting our assumption. Hence f is not cellular.

4.6. The proof of (1.1a). If n=1 or 2, then f is a homeomorphism; thus we may suppose that $n \ge 3$. We suppose that f is not acyclic, and will obtain a contradiction. Then (1.1b) yields (1.1a).

There is a minimal integer p (p=0, 1, ..., n) such that there are (i) a C^n submanifold $\Gamma^p \subset N^n$ $(\partial \Gamma^p = \varnothing)$ on which f is transverse regular, and (ii) a point $y_1 \in \Gamma^p$ with $f^{-1}(y_1)$ not acyclic. By (2.2)(2i) f is monotone onto, and by (2.2)(iii) $p \ge 2$. The set $f^{-1}(y_1)$ is the nested intersection of sets $f^{-1}(B_j^p)$ (j=1, 2, ...), where each B_j^p is a C^n diffeomorph of a p-ball in Γ^p and f is transverse regular on ∂B_j^p . By the Continuity Theorem [12, p. 261] there exist f and f is transverse regular on with f is transverse regular on f is transverse regular.

By (4.2) $\pi_1(f^{-1}(B^p)) = 0$, so that $f^{-1}(B^p)$ is orientable. Suppose that

$$H^{\mathfrak{t}}(f^{-1}(B^{p});Z)=0$$

for every $i \ge p/2$. By the Universal Coefficient Theorem [19, p. 172, Example 2] the same is true for every coefficient field F. From the Lefschetz Duality Theorem $H^i(f^{-1}(B^p), f^{-1}(\partial B^p); F) = 0$ for every $i \le p/2$, and from the cohomology sequence and the fact that $H^i(f^{-1}(\partial B^p); F) = 0$ for j < p-1, it follows that $H^i(f^{-1}(B^p); F) = 0$ for all i; thus $H^i(f^{-1}(B^p); Z) = 0$ for all i. As a result we may suppose that

(1) for some
$$i \ge p/2$$
, $H^i(f^{-1}(B^p); Z) \ne 0$.

Let $\Delta^{p,q}$ be the qth barycentric subdivision of the closed p-simplex Δ^p . Given any $\delta > 0$, there are $q \ge 1$ and a C^n triangulation [22, pp. 76–77] γ mapping $\Delta^{p,q}$ onto B^p with mesh at most δ (e.g., see [23, p. 546]); by applications of [29, p. 26] (cf. the proof of [9, Lemma 3]) we may suppose that f is transverse regular on each open simplex $\gamma(\sigma)$ of each dimension, so that $f^{-1}(\gamma(\sigma))$ is a C^n manifold. From the definition of p and the Vietoris Mapping Theorem (4.3), $f^{-1}(\gamma(\sigma))$ is acyclic for each closed simplex σ with dim $\sigma < p$. Now from the Mayer-Vietoris sequence $H^j(f^{-1}(B^p); Z) \approx \sum_{\tau} H^j(f^{-1}(\gamma(\tau)); Z)$, direct sum over the closed p-simplices τ of $\Delta^{p,q}$; thus $f^{-1}(\gamma(\tau))$ is acyclic for all but at most m closed p-simplices τ , where m is the minimal number of generators of $H^*(f^{-1}(B^p); Z)$.

Given any $\eta > 0$ and any closed p-simplex τ of $\Delta^{p,q}$, $\gamma(\tau)$ has an analogous subdivision of mesh at most η , and it follows from the Continuity Theorem [12, p. 261] that

(2) $f^{-1}(y)$ is acyclic for all but at most m points $y \in \text{int}(B^p)$, and

$$H^*(f^{-1}(B^p);Z) \approx \sum_{y \in \text{int}(B^p)} H^*(f^{-1}(y);Z).$$

By (1) there is a point $x \in \text{int}(B^p)$ with $H^i(f^{-1}(x); Z) \neq 0$; since $f^{-1}(x) \subseteq B_f$, $\dim(B_f) \ge i \ge p/2$ [16, p. 137, (F)]. In case p = n a contradiction results, and thus $p = 3, 4, \ldots$, or n - 1.

Let Σ be the C^n diffeomorph of S^p given by (3.5) with $B^p \subset \Sigma \subset N^n$, and let $h = \rho f \omega$ be the C^n map given by (3.4) for f, $K_0^p = \Sigma$, and $K_1^p = \partial B^p$; then h maps $f^{-1}(B^p) \times E^{n-p}$ onto $B^p \times E^{n-p}$ with $h(f^{-1}(B^p) \times \{t\}) = B^p \times \{t\}$ and h transverse regular on $\partial B^p \times \{t\}$ for each $t \in E^{n-p}$. By the preceding argument, for each $t \in E^{n-p}$ there are at most m points $y \in \text{int}(B^p)$ such that $h^{-1}(y, t)$ is not acyclic. Thus there is a t such that the number of points $y \in \text{int}(B^p)$ with $h^{-1}(y, t)$ not acyclic is maximal. We may as well suppose that t = 0.

Let y_j (j=1, 2, ..., s) be these points in $int(B^p)$, and let B_j^p be C^n diffeomorphs of a p-ball in $int(B^p)$ such that the sets B_j^p are mutually disjoint, $y_j \in int(B_j^p)$, and h is transverse regular on $\partial B_j^p \times \{0\}$. By (2) applied to B_j^p , $H^*(f^{-1}(B_j^p; Z)) \neq 0$. Let χ be the C^n diffeomorphism given by (3.4) applied to h itself, with ρ the identity map, $K_0^p = \Sigma \times \{0\}$, $K_j^p = \partial B_j^p \times \{0\}$ (j=1, 2, ..., s), and $K_{s+1}^p = \partial B_j^p \times \{0\}$. For each j (j=1, 2, ..., s) and $j \in S(0, \epsilon)$, $j \in S(0,$

Thus for each $t \in S(0, \varepsilon)$ there is exactly one point $\alpha(t) \in \operatorname{int}(B_1^p) \times \{t\}$ with $(h\chi)^{-1}(\alpha(t))$ not acyclic; by (1) and (2) $H^1((h\chi)^{-1}(\alpha(t)); Z) \neq 0$ for some $i \geq p/2$.

The proof now parallels (but differs from) the last half of Case 2 in the proof of [8, p. 372, (2.4)]. We next prove that the one-to-one function $\alpha: S(0, \varepsilon) \to \operatorname{int}(B_1^p) \times S(0, \varepsilon)$ is continuous; suppose the contrary. Then there exist $t_r \in S(0, \varepsilon)$ ($r=1, 2, \ldots$) with $t_r \to t_0$, $\alpha(t_r) \to z$, $z \neq \alpha(t_0)$. Choose a C^n diffeomorph $A^p \subset \Sigma$ of the unit p-ball with $z \in \operatorname{int}(A^p) \times \{t_0\}$, $\alpha(t_0) \notin A^p \times \{t_0\}$, and h_χ transverse regular on $\partial A^p \times \{t_0\}$. There exists $\zeta > 0$ such that h_χ is transverse regular on $\partial A^p \times \{t\}$ for each $t \in S(t_0, \zeta)$; let ξ be the diffeomorphism given by (3.4) for the restriction map $h_\chi|(\Sigma \times S(t_0, \zeta))$, ρ the identity map, $K_0 = \Sigma \times \{t_0\}$, and $K_1 = \partial A^p \times \{t_0\}$. If $A^p \times \{t_0\}$ is identified with A^p , then $h_\chi \xi$ maps $(h_\chi)^{-1}(A^p) \times \{t\}$ onto $A^p \times \{t\}$ for each t in some neighborhood of t_0 . Since $\alpha(t_0) \notin A^p \times \{t_0\}$, $(h_\chi)^{-1}(A^p)$ is acyclic by (2); since $\alpha(t_r) \in \operatorname{int}(A^p) \times \{t_r\}$ for r sufficiently large, $(h_\chi)^{-1}(A^p)$ is not acyclic by (2). From this contradiction it follows that α is continuous, and thus a homeomorphism into.

We may suppose that B_1^p is the closed unit p-ball D^p ; let $e: D^p \times S(0, \varepsilon) \to D^p \times S(0, \varepsilon)$ be the restriction of h_X , and let $\pi: D^p \times S(0, \varepsilon) \to D^p$ be projection. Since $\alpha(t) \in \operatorname{int}(D^p) \times \{t\}$, we may suppose (by replacing ε by a smaller number if necessary) that there exists $\eta > 0$ with $|x - \pi\alpha(t)| > \eta$ for all $x \in \partial D^p$ and $t \in S(0, \varepsilon)$. For each ϕ , $0 \le \phi \le \eta$, let

$$A_{\phi} = \{(x, t) : |x - \pi \alpha(t)| \leq \phi \text{ and } t \in S(0, \varepsilon)\}.$$

If $B(0, \phi)$ is the closed ball of radius ϕ and center 0 in E^p , the function $\beta: B(0, \phi) \times S(0, \varepsilon) \to A_{\phi}$ defined by $\beta(x, t) = (x + \pi \alpha(t), t)$ is a homeomorphism. Each $A_{\phi} \cap (D^p \times \{t\})$ is a (geometric) p-ball in $\operatorname{int}(D^p) \times \{t\}$, so there is a canonical deformation retraction of $D^p \times \{t\}$ onto $A_{\phi} \cap (D^p \times \{t\})$, retracting along radial lines from $\pi \alpha(t)$; these retractions define a deformation retraction of $D^p \times S(0, \varepsilon)$ onto A_{ϕ} .

Fix $\phi > 0$, and let U and V be the one point compactifications of $(D^p \times S(0, \varepsilon))$ $-\inf(A_{\phi})$ and ∂A_{ϕ} , respectively, with added point u. Let P, Q, R, S, and T be the one point compactifications of $e^{-1}(D^p \times S(0, \varepsilon))$, $e^{-1}(\alpha(S(0, \varepsilon)))$, $e^{-1}(A_{\phi})$, $e^{-1}(U - \{u\})$, and $e^{-1}(V - \{u\})$, respectively, with added point q. Now

$$H^{k}(P;Z) \approx H^{k}(P,\{q\};Z) \quad (k=1,2,...).$$

Since $e^{-1}(D^p \times S(0, \epsilon))$ is homeomorphic to $f^{-1}(B_1^p) \times E^{n-p}$, $H^k(P, \{q\}; Z)$ is isomorphic to $H^k(f^{-1}(B_1^p) \times S^{n-p}, f^{-1}(B_1^p) \times \{z\}; Z)$ [12, p. 266], where z is any point of S^{n-p} . We may suppose that i is the largest integer for which $H^i(f^{-1}(B_1^p); Z) \neq 0$, so that $H^{n-p+i}(f^{-1}(B_1^p); Z) = 0$. From the exactness of the cohomology sequence

$$\psi^*: H^{n-p+i}(f^{-1}(B_1^p) \times S^{n-p}, f^{-1}(B_1^p) \times \{z\}; Z) \to H^{n-p+i}(f^{-1}(B_1^p) \times S^{n-p}; Z)$$

is an epimorphism (ψ is inclusion), and by the Künneth Formula the latter group is isomorphic to $H^{i}(f^{-1}(B_{1}^{p}); Z)$. Thus $H^{n-p+i}(P; Z) \neq 0$.

Since V is a deformation retract of U, $H^{j}(U;Z) \approx H^{j}(V;Z)$. From the Vietoris Mapping Theorem (3.4) $H^{j}(U;Z) \approx H^{j}(S;Z)$ and $H^{j}(V;Z) \approx H^{j}(T;Z)$, and hence the inclusion map induces an isomorphism $H^{j}(S;Z) \approx H^{j}(T;Z)$. As a result $H^{j}(S,T;Z)=0$, and, by excision [12, p. 266], $H^{j}(P,R;Z)=0$. Thus inclusion induces an isomorphism $H^{j}(P;Z) \approx H^{j}(R;Z)$. Since ϕ may be chosen arbitrarily small, it follows from the Continuity Theorem [12, p. 261] that $H^{j}(P;Z) \approx H^{j}(Q;Z)$. Thus $H^{n-p+i}(Q;Z) \neq 0$.

From [16, p. 137, (F)] $\dim(Q - \{q\}) \ge n - p + i$. By the choice of Q, $H^i(e^{-1}(e(x)); Z) \ne 0$ (i>0) and $e^{-1}(e(x)) \subseteq Q$ for each $x \in Q - \{q\}$, so that $Q - \{q\} \subseteq B_e$. Since the branch set B_e is homeomorphic to a subset of B_f , $\dim(B_f) \ge n - p + i$. Since $p/2 \le i$ and p < n, n - p + i > n/2, contradicting the hypothesis on $\dim(B_f)$.

4.7. Remark. Under the hypotheses of (1.1a) or (1.1b), if M^n and N^n are compact and simply connected, then f is a homotopy equivalence.

Proof. Since f is acyclic, it induces (4.3) isomorphisms $f^*: H^i(M^n; Z) \to H^i(N^n; Z)$ for all i. Because M^n and N^n are finite polyhedra [22, p. 101], f thus induces isomorphisms $f_*: H_i(M^n; Z) \to H_i(N^n; Z)$ for all i (use [19, p. 172, Example 2] to prove the dual of [19, p. 81, Corollary 4.6]). The remark follows from [13, p. 113, (3.8)].

4.8. REMARK. Let M^n and N^n be triangulated manifolds, and let $f: M^n \to N^n$ be simplicial and proper with $\dim(B_f) \le n-1$.

- (a) If f is monotone onto, then f is a homeomorphism.
- (b) If $\dim(B_f) \le n-3$, then f is a finite-to-one covering map.

Thus the analogs of (1.1), (1.2), and [8, p. 370, (1.1)] for simplicial maps are a fortiori true.

Proof. Since $\dim(B_f) \le n-1$, f maps each simplex σ of M^n homeomorphically onto $f(\sigma)$; thus f is light and $\dim(f(B_f)) = \dim(B_f)$. If $\dim(B_f) = n-1$, then there are two n-simplices σ and τ with common (n-1)-face such that $f(\sigma) = f(\tau)$; thus, if f is monotone, $\dim(B_f) \le n-2$. From [10, p. 608, (1.2)] it follows that if f is monotone, then $B_f = \emptyset$, so that f is a homeomorphism. In case (b) it similarly follows from [10, p. 608, (1.2)] that $B_f = \emptyset$, and since f is proper, f is a finite-to-one covering map.

- 5. Answer to a question of Hopf. In [14] H. Hopf asked the following question: If $f: S^3 \to S^2$ is essential, is it true that each y in S^2 has $\dim(f^{-1}(y)) \ge 1$ [14, p. 284, (b)]? In fact, is the first Betti number positive (d)? An affirmative answer to the first question and (essentially) to the second is shown below.
- 5.1. THEOREM. If $f: S^3 \to S^2$ is an essential map, then, for every $y \in S^2$, $H^1(f^{-1}(y); Z)$ has an element of infinite order. In particular $\dim(f^{-1}(y)) \ge 1$.

Proof. By [15, p. 68, (6.3) and (6.4)] f=pF, where $F: S^3 \to S^3$ is essential and p is the Hopf map $p: S^3 \to S^2$. Given $y \in S^2$, let D be a topological closed disk in S^2 such that $y \in \text{int } D$, and let $\rho: D \times S^1 \to D$ and $\sigma: D \times S^1 \to S^1$ be the projection maps. Since p is a bundle map, there exists a homeomorphism h of $p^{-1}(D)$ onto $D \times S^1$ such that $\rho h = p$. We may suppose that y is the origin 0 of the plane, that D_t is the closed disk of radius t about $0 \ (0 \le t \le 1)$, and that $t \to t$.

Suppose that the (restriction) map $\sigma hF|f^{-1}(D_t): f^{-1}(D_t) \to S^1$ is inessential for some t, $0 < t \le 1$; we may suppose that t = 1. Let $G: f^{-1}(D_1) \times [0, 1] \to S^1$ be the homotopy, where $G(x, 1) = \sigma hF(x)$ and $G(x, 0) = q \in S^1$. Define $H: f^{-1}(D_1) \times [0, 1] \to D_1 \times S^1$ by H(x, u) = (f(x), G(x, u)); then H(x, 1) = hF(x) and $H(f^{-1}(D_1), 0) = D_1 \times \{q\}$. Define maps $F_s: S^3 \to S^3$ $(0 \le s \le 1)$ by: $F_s = F$ off $f^{-1}(D_1)$; and for $x \in f^{-1}(\text{bdy}(D_t))$, $F_s(x) = h^{-1}H(x, s + (1-s)t)$. Then $F_1 = F$, F is homotopic to F_0 , and only one point of $p^{-1}(0)$ is in the range of F_0 ; hence F is inessential, contradicting the hypothesis.

As a result $\sigma hF|f^{-1}(D_t)$ is essential $(0 < t \le 1)$. It follows that the Brushlinsky group $\pi^1(f^{-1}(D_t)) \ne 0$ [15, p. 47]; moreover the diagram

$$\pi^{1}(f^{-1}(D_{t})) \approx H^{1}(f^{-1}(D_{t}); Z)$$

$$\downarrow i^{\#} \qquad \qquad \downarrow i^{*}$$

$$\pi^{1}(f^{-1}(D_{u})) \approx H^{1}(f^{-1}(D_{u}); Z)$$

(where t>u>0, and i^* and i^* are induced by inclusion) commutes [15, pp. 49, 59, (C)]. It follows from [12, p. 221, (4.4)] and the Continuity Theorem [12, p. 261] that $H^1(f^{-1}(y); Z) \neq 0$; thus $\dim(f^{-1}(y)) \geq 1$ [16, p. 137, (F)]. From the Universal

Coefficient Theorem (and the Continuity Theorem), $H^1(f^{-1}(y); Z)$ has an element of infinite order.

5.2. Remarks. More generally, if S^3 is replaced by any finite polyhedron (e.g., a compact 3-manifold) and f is algebraically trivial [15, p. 67], the same proof yields the conclusion. As Hopf points out, the strict analog of this theorem for higher dimensions is false: define $f: S^4 \to S^3$ by suspension of $p: S^3 \to S^2$; there are two points y_i for which $f^{-1}(y_i)$ is a single point.

The author is grateful to the referee for suggesting improvements in the presentation.

REFERENCES

- 1. E. G. Begle, The Vietoris mapping theorem for bicompact spaces, Ann. of Math. 51 (1950), 534-543.
- 2. M. Brown, "A mapping theorem for untriangulated manifolds" in *Topology of 3-manifolds*, edited by M. K. Fort, Jr., Prentice-Hall, Englewood Cliffs, N. J., 1962, 92-94.
- 3. ——, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
- 4. ——, "Locally flat embeddings of topological manifolds" in *Topology of 3-manifolds*, edited by M. K. Fort, Jr., Prentice-Hall, Englewood Cliffs, N. J., 1962, 83-91.
- 5. S. S. Cairns, Homeomorphisms between topological manifolds and analytic manifolds, Ann. of Math. 41 (1940), 796-808.
- 6. P. T. Church, Differentiable maps with non-negative Jacobian, J. Math. Mech. 16 (1966), 703-708.
- 7. ——, Differentiable open maps on manifolds, Trans. Amer. Math. Soc. 109 (1963), 87-100.
- 8. —, Factorization of differentiable maps with branch set dimension at most n-3, Trans. Amer. Math. Soc. 115 (1965), 370-387.
 - 9. ——, On points of Jacobian rank k. II, Proc. Amer. Math. Soc. 16 (1965), 1035–1038.
- 10. P. T. Church and E. Hemmingsen, Light open maps on n-manifolds. II, Duke Math. J. 28 (1961), 607-624.
- 11. P. H. Doyle and J. G. Hocking, A decomposition theorem for n-dimensional manifolds, Proc. Amer. Math. Soc. 13 (1962), 469-471.
- 12. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, N. J., 1952.
- 13. P. J. Hilton, An introduction to homotopy theory, Cambridge Univ. Press, Cambridge, 1953.
- 14. H. Hopf, Über den Defekt stetiger Abbildungen von Mannigfaltigkeiten, Rend. Mat. e Appl. (5) 21 (1962), 273-285.
 - 15. S. T. Hu, Homotopy theory, Academic Press, New York, 1959.
- 16. W. Hurewicz and H. Wallman, *Dimension theory*, Princeton Univ. Press, Princeton. N. J., 1941.
- 17. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience, New York, 1963.
- 18. K. W. Kwun and F. Raymond, Almost acyclic maps of manifolds, Amer. J. Math. 86 (1964), 638-649.
 - 19. S. MacLane, Homology, Academic Press, New York, 1963.
- 20. J. Milnor, Lectures on the h-cobordism theorem, Princeton Univ. Press, Princeton, N. J., 1965.

- 21. ——, Morse theory, Princeton Univ. Press, Princeton, N. J., 1963.
- 22. J. R. Munkres, *Elementary differential topology*, Princeton Univ. Press, Princeton, N. J., 1963.
- 23. ——, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. of Math. 72 (1960), 521-554.
 - 24. R. S. Palais, Extending diffeomorphisms, Proc. Amer. Math. Soc. 11 (1960), 274-277.
- 25. A. Sard, Hausdorff measure of critical images on Banach manifolds, Amer. J. Math. 87 (1965), 158-174.
 - 26. H. Seifert and W. Threlfall, Lehrbuch der Topologie, Chelsea, New York, 1947.
 - 27. N. Steenrod, Topology of fiber bundles, Princeton Univ. Press, Princeton, N. J., 1951.
- 28. S. Sternberg, Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964.
- 29. R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86.
- 30. C. J. Titus, Sufficient conditions that a mapping be open, Proc. Amer. Math. Soc. 10 (1959), 970-973.
- 31. C. J. Titus and G. S. Young, A Jacobian condition for interiority, Michigan Math. J. 1 (1952), 89-94.
- 32. G. T. Whyburn, *Analytic topology*, Colloq. Publ., Vol. 28, Amer. Math. Soc., Providence, R. I., 1942.
 - 33. —, Topological analysis, Princeton Univ. Press, Princeton, N. J., 1958.
 - 34. W. P. Ziemer, The structure of quasi-open maps, Duke Math. J. 32 (1965), 661-672.

SYRACUSE UNIVERSITY
SYRACUSE, NEW YORK